
BACKGROUND SUBTRACTION WITH EIGEN BACKGROUND

METHODS USING MATLAB

1
Ilmiyati Sari

2
Nola Marina

1
Pusat Studi Komputasi Matematika, Universitas Gunadarma

e-mail: ilmiyati@staff.gunadarma.ac.id

2
Pusat Studi Komputasi Matematika, Universitas Gunadarma

e-mail: nola@staff.gunadarma.ac.id

ABSTRACT

Most background models are pixel-based and it is not robust to unstable

background. One frame-based background model is eigen background. In this paper, we

present eigen background model and to support the discussion of the theory, we perform

some simulations using the software Matlab. The result of experiment is to obtain good

background we just use one eigen vector corresponding one largest eigen value. We obtain

foreground image with add one parameter, i. e threshold. The used threshold is 60.

I. INTRODUCTION

Detection of foreground objects in video often requires robust techniques for

background modeling. The basic idea of background modeling is to maintain an estimation

of the background image which should represent the scene with no foreground objects and

must be kept updated frame by frame so as to model both static and dynamic pixels in the

background. Moving objects can then be detected by a simple subtraction and threshold

procedure.

Many background modeling methods for background subtraction have been

proposed. Most background models are pixel-based and very little attention is given to

region-based or frame-based methods. Typical models, among many others, include

Kalman filters [1], Gaussians [2], mixture of Gaussians (MoG) [3, 4] and kernel density

estimation [5]. Despite being capable of solving many background maintenance issues,

pixel-based models are less efficient and effective in handling light switching and time-of-

day problems [6]. Rather, frame-based background models may potentially handled such a

problem more efficiently. One frame-based background model is eigen background.

In this paper, we present eigen background model and to support the discussion of the

theory, we perform some simulations using the software Matlab.

The paper is organized as follows. In section II, we describe eigen space model,

efficient implementation of eigen space model and background subtraction with eigen

background while results and conclusion are presented in section III and IV.

II. EIGEN BACKGROUND

In this section a description of the eigen background algorithm will be given. We

will start with the definition of eigen space. The key element of this method lies in its

ability of learning the background model from unconstraint video sequence, even when

they contain moving foreground objects. Eigen takes into account neighboring statistics. It

thus has a more global definition on background which, hopefully, make it more robust to

unstable backgrounds [7].

II.1 EIGEN SPACE MODELS

We will first introduce the concept of eigen value decomposition applied to the case

of a sequence of images. We follow mainly the definitions of [8]. The following notation

will be used: italics with subscripts to indicate vectors and matrixes (𝐴𝑚,𝑛 is a matrix of m

rows and n columns), bold letters with subscripts for images (𝑩ℎ,𝑤 is an image with height

h and width w).

Given an image 𝑰, of size ℎ, 𝑤 (height, width) it can be rewritten as a column

vector 𝑥,

 𝑰ℎ,𝑤 → 𝑥𝑛,1, (1)

where 𝑛 = ℎ𝑤. Given a sequence of N images 𝒙𝑛,1
1 , 𝒙𝑛,1

2 , ⋯ , 𝒙𝑛,1
𝑁 , the average image is

computed as:

𝑥̅𝑛,1 =
1

𝑁
∑ 𝑥𝑛,1

𝑖𝑁
𝑖=1 . (2)

The covariance matrix of the sequence of images is given by:

𝐶𝑛,𝑛 =
1

𝑁
∑ (𝑥𝑛,1

𝑖 − 𝑥̅𝑛,1)(𝑥𝑛,1
𝑖 − 𝑥̅𝑛,1)

𝑇𝑁
𝑖=1 . (3)

The same covariance matrix can be obtained, by rearranging the sequence of image

in single matrix 𝑋𝑛,𝑁 in which each column contains one image:

𝑋𝑛,𝑁 = [𝑥𝑛,1
1 𝑥𝑛,1

2 ⋯ 𝑥𝑛,1
𝑁]. (4)

From this 𝐶𝑛,𝑛 can be obtained by:

𝐶𝑛,𝑛 =
1

𝑁
(𝑋𝑛,𝑁 − 𝑥̅𝑛,1𝐼𝐼1,𝑁)(𝑋𝑛,𝑁 − 𝑥̅𝑛,1𝐼𝐼1,𝑁)

𝑇
, (5)

in which is a matrix in which all elements are set to 1.

 By definition a covariance matrix is real and symmetric. Its eigenvalue

decomposition is guaranteed to exist then, and its given by:

𝐶𝑛,𝑛,𝑈𝑛,𝑛 = 𝑈𝑛,𝑛,𝐴𝑛𝑛, (6)

where 𝑈𝑛,𝑛 are eigenvectors, and 𝐴𝑛,𝑛 is a diagonal matrix of eigenvalues, ordered form the

most significant one to the least relevant one. The eigenvectors are orthonormal, so that

𝑈𝑛,𝑛
𝑇 𝑈𝑛,𝑛 = 𝐼𝑛,𝑛, the identity matrix.

 The memory requirement for such an algorithm are quite demanding. Given a set of

𝑁 images of n pixels each, the covariance matrix obtained, 𝐶𝑛,𝑛, will have a size of 𝑛2.

Let’s as an example, consider an image acquired with a VGA camera, considered

nowadays a low resolution device. The amount of memory required to store such a matrix

is then:

𝑤 = 640, ℎ = 480 → 𝑛 = 307200 → 𝑛2 = 9.40𝑒10.

Moreover, the computation of an eigen value decomposition for a matrix of size 𝑛2 with

such large values is absolutely prohibitive.

Clearly, the simplest solution is to greatly reduce the adopted image resolution,

with the obvious side effect of a lower quality representation of the scene.

II.2 Efficient Implementaion of Eigen Space Model

 Fortunately a much more efficient implementation is obtained by simply observing

the following set of equations [8,9]. Let’s once again rearrange a sequence of 𝑁 images as

𝑋𝑛,𝑁 given by equation (4). We can then compute matrix as:

 𝐷𝑁,𝑁 =
1

𝑁
(𝑋𝑛,𝑁 − 𝑥̅𝑛,1𝐼𝐼1,𝑁)

𝑇
(𝑋𝑛,𝑁 − 𝑥̅𝑛,1𝐼𝐼1,𝑁). (7)

If we define:

𝐴𝑛,𝑁 = (𝑋𝑛,𝑁 − 𝑥̅𝑛,1𝐼𝐼1,𝑁). (8)

We can rewrite 𝐶𝑛,𝑛 and 𝐷𝑁,𝑁 as:

𝐶𝑛,𝑛 = 𝐴𝑛,𝑁𝐴𝑛,𝑁
𝑇 . (9)

𝐷𝑁,𝑁 = 𝐴𝑛,𝑁
𝑇 𝐴𝑛,𝑁. (10)

As for , an eigen value decomposition for 𝐷𝑁,𝑁 exists and it’s given by:

𝐷𝑁,𝑁 𝑉𝑁,𝑁 = 𝑉𝑁,𝑁ΛN,N. (11)

Let’s now take any of the eigen vectors of 𝐷𝑁,𝑁 , 𝑉𝑁,1
1 with its respective eigen

value 𝛿𝑖. By definition of eigen value decomposition, the following equations hold:

𝐴𝑛,𝑁
𝑇 𝐴𝑛,𝑁𝑉𝑁,1

𝑖 = 𝛿𝑖𝑉𝑁,1
𝑖 , (12)

𝐴𝑛,𝑁𝐴𝑛,𝑁
𝑇 𝐴𝑛,𝑁𝑉𝑁,1

𝑖 = 𝛿𝑖𝐴𝑛,𝑁𝑉𝑁,1
𝑖 , (13)

(𝐴𝑛,𝑁𝐴𝑛,𝑁
𝑇)𝐴𝑛,𝑁𝑉𝑁,1

𝑖 = 𝛿𝑖𝐴𝑛,𝑁𝑉𝑁,1
𝑖 (14)

If we define:

𝑃𝑛 ,1
𝑖 = 𝐴𝑛,𝑁𝑉𝑁,1

𝑖 . (15)

And using equation (9), we can then rewrite equation (14) as:

 𝐶𝑛,𝑛𝑃𝑛,1
𝑖 = 𝛿𝑖𝑃𝑛,1

𝑖 . (16)

By definition of eigen decomposition, 𝑃𝑛,1
𝑖 is an eigen vector of 𝐶𝑛,𝑛 and 𝛿𝑖 is the

respective eigen value. It is then clear that we can obtain the needed eigen decomposition

of matrix 𝐶𝑛,𝑛 by solving the decomposition of matrix 𝐷𝑁,𝑁.

The advantage is that, in typical applications, the number of observations N is much

smaller than the number of pixels in the image n. We can thus write:

 𝑁 << 𝑛,

 𝑃𝑛,𝑁 = 𝐴𝑛,𝑁𝑉𝑁,𝑁,

 𝐶𝑛,𝑛𝑃𝑛,𝑁 = 𝑃𝑛,𝑁Λ𝑁,𝑁.

Matrix 𝑃𝑛,𝑁 is guaranteed to be orthogonal, but it is not orthonormal. We then need to

normalize each vector. Two methods are possible:

𝑈𝑛,1
𝑖 = 𝑃𝑛,1

𝑖 /‖𝑃𝑛,1
𝑖 ‖, (17)

𝑈𝑛,1
𝑖 =𝑃𝑛,1

𝑖 /√𝛿𝑖. (18)

The second method (18), can be derived following equation in [7]. The advantage of using

(18) when compared to (17) is that it allows to save some computation, because term does

not need to be computed. Even if this can appear as minor detail, in a real time

implementation it can speed up the computation.

𝐶𝑛,𝑛𝑈𝑛,𝑁 = 𝑈𝑛,𝑁Λ𝑁,𝑁. (19)

Equation (19) solves the same problem of equation (6), reducing greatly the amount of

computation and memory needed, with the only side effect of returning the N eigen vectors

out of the total available n, corresponding to the N most signigicant eigen values. This does

not create problems though, since the number of significant eigen vectors, even for a scene

with many lighting variations is seldom higher than few tens.

II.3 Background Subtraction with Eigen Background

In this section we describe how to exploit the decomposition of a sequence of

images to build a background model and achieve a simple background subtraction

algorithm.

In the typical scenario, a background model is constructed using a sequence of

frames captured with a video camera, while no object which should be detected as

foreground appears in the scene. These images are arranged in matrix 𝑋𝑛,𝑁 following

equation (4) and the eigen value decomposition is obtained through equation (26). In order

to be robust to illumination changes taking place in the scene, the best option is to select a

sequence of images in which the expected variations is mostly present. The model consists

thus of the following matrices:

𝑥̅𝑛,1 = average model image

Λ𝑘,𝑘 = 𝑘 largest eigen values

𝑈𝑛,𝑘= corresponding 𝑘 eigen vectors.

The detection of foreground is obtained using the following steps. First, given a

captured image, rearranged as a vector 𝑥𝑛,1
𝑖 , the reconstruction of such image through the

background model is :

𝑟𝑘,1 = 𝑈𝑛,𝑘
𝑇 (𝑥𝑛,1

𝑖 − 𝑥̅𝑛,1), (20)

and then reconstructed approximation image (𝑥𝑛,1
𝑖)

′
 as follows

(𝑥𝑛,1
𝑖)

′
= 𝑈𝑛,𝑘𝑟𝑘,1 + 𝑥̅𝑛,1. (21)

 Finally, foreground moving pixels are detected by computing the distance between

the input image 𝑥𝑛,1
𝑖 and reconstructed one (𝑥𝑛,1

𝑖)
′

 𝜒𝑛,1
𝑖 = {

1
0

𝑖𝑓 𝑑0 (𝑥𝑛,1
𝑖 , (𝑥𝑛,1

𝑖)
′
) > 𝜏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (22)

where 𝜏 is a threshold and 𝑑0 is defined as follows

 𝑑0 = |𝑥𝑛,1
𝑖 − (𝑥𝑛,1

𝑖)
′
|.

III. Experimental Results

 As an important part of this paper, we also present the experimental results of our

implementation. Our experiments are employed on Matlab R2009a on 32-bit windows

system .

We first analyse the effect of including in the model images containing foreground,

such as car moving of the street. Figure 1 shows some of the frames that were used to

compute the background model. Figure 2 shows the obtained average image with 1 largest

eigen vectors and Figure 3 shows the background subtraction obtained with different eigen

values.

 Figure 1: Frames of the sequence that were used to compute the background model. In total 51 frames

 were used to compute the model.

Figure 2: Image and eigen vectors, corresponding to1 largest eigen values, of the background

model obtained with the sequence shown in Figure 1.

Figure 3: Top: form left to right: the background image use 5, 10, 20, and 30 largest eigen value

 Bottom: from left to right: background image use 40, 45, 48, and 51 (all) largest eigen value

The background image in Figure 2 and 3, we reconstruct it with formula in equation

(21). From Figure 2 it is clear, we can get background from each sequence image only use

1 largest eigen value. Figure 3 show the effect of eigen value against the background image

in more detail. Growing number of the largest eigen values are used, then it will be more

visible foreground.

 Based on section 2.3, foreground image we can obtain from equation (22). Then to

change graylevel image that we get in equation (22), we use threshold to get foreground

image of binary image. Figure 4 show foreground image with different eigen value.

Figure 4: Foreground image and eigen vectors, corresponding to k largest eigen values, of the

background model obtained with the sequence shown in Figure 1. Used threshold is 60.

From Figure 4, it is clear that the largest number of eigen values can be used to

obtain the good foreground image is 40. In Figure 4, used threshold is 60, because we have

done simulation and we obtain 60 is the best threshold value for all images. Figure 5 shows

foreground image reconstruct with 1 largest eigen value and different threshold.

Figure 5. From left to right. foreground image reconstruct with 1 largest eigen value and different threshold

(𝜏). 𝜏 = 50, 𝜏 = 55, and 𝜏 = 70.

IV. Conclusion

 We presented the theory and implementation of background subtraction based on

eigen spaces. Effects of most parameters (number of k largest eigen vector and threshold)

choice have been illustrated, to provide the reader with the insights needed to make an

informed choice when selecting these parameters. The final choice is strongly dependent

on the application.

 From experiment, it can be concluded that to obtain the background image, we only

use 1 eigen vector corresponding 1 largest eigen value. Foreground image is obtained by

equation (21) with 1 eigenvector corresponding 1 largest eigen value and threshold equals

60. This threshold can be used for each sequence image.

References

[1] Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, G., Rao, B., Russell, S.:

Towards robust automatic traffic scene analysis in real-time. In: Proceedings of the

International Conference on Pattern Recognition, Israel (1994) 126–131

[2] Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time tracking

of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence

19(7) (1997) 780–785

[3] Stauffer, C., Grimson,W.E.L.: Learning patterns of activity using real-time tracking.

IEEE Transactions on Pattern Analysis andMachine Intelligence 22(8) (2000) 747–757

[4] Lee, D.S.: Effective gaussian mixture learning for video background subtraction.IEEE

Transactions on Pattern Analysis and Machine Intelligence 27(5) (2005) 827–832

[5] Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground

modeling using non-parametric kernel density estimation for visual surveillance.

Proceedings of the IEEE 90(7) (2002) 1151–1163

[6] Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice

of background maintenance. In: ICCV (1). (1999) 255–261

[7] Benezeth, Y., Jodoin, P. M., Emile, B., Laurent, H., Rosenberger, C.: Comparative

study of background subtraction algorithms. Journal of Electronic Imaging (19).

(2010).

[8] Karaman, M., Goldmann, D., Yu, D., Sikora, T.: Comparison of static background

segmentation methods. Visual Communications and Image Processing . (2005).

[9] Turk, M., Pentland, A.: Eigen for Recognition. Journal of Cognitive Neuroscience.

(1991).

